Theory and simulation of ion conduction in the pentameric GLIC channel.

نویسندگان

  • Fangqiang Zhu
  • Gerhard Hummer
چکیده

GLIC is a bacterial member of the large family of pentameric ligand-gated ion channels. To study ion conduction through GLIC and other membrane channels, we combine the one-dimensional potential of mean force for ion passage with a Smoluchowski diffusion model, making it possible to calculate single-channel conductance in the regime of low ion concentrations from all-atom molecular dynamics (MD) simulations. We then perform MD simulations to examine sodium ion conduction through the GLIC transmembrane pore in two systems with different bulk ion concentrations. The ion potentials of mean force, calculated from umbrella sampling simulations with Hamiltonian replica exchange, reveal a major barrier at the hydrophobic constriction of the pore. The relevance of this barrier for ion transport is confirmed by a committor function that rises sharply in the barrier region. From the free evolution of Na(+) ions starting at the barrier top, we estimate the effective diffusion coefficient in the barrier region, and subsequently calculate the conductance of the pore. The resulting diffusivity compares well with the position-dependent ion diffusion coefficient obtained from restrained simulations. The ion conductance obtained from the diffusion model agrees with the value determined via a reactive-flux rate calculation. Our results show that the conformation in the GLIC crystal structure, with an estimated conductance of ~1 picosiemens at 140 mM ion concentration, is consistent with a physiologically open state of the channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pore opening and closing of a pentameric ligand-gated ion channel.

Nerve signaling in humans and chemical sensing in bacteria both rely on the controlled opening and closing of the ion-conducting pore in pentameric ligand-gated ion channels. With the help of a multiscale simulation approach that combines mixed elastic network model calculations with molecular dynamics simulations, we study the opening and closing of the pore in Gloeobacter violaceus channel GL...

متن کامل

Isoflurane alters the structure and dynamics of GLIC.

Pentameric ligand-gated ion channels are targets of general anesthetics. Although the search for discrete anesthetic binding sites has achieved some degree of success, little is known regarding how anesthetics work after the events of binding. Using the crystal structures of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), which is sensitive to a variety of genera...

متن کامل

Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel.

GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and ...

متن کامل

Microsoft Word - 2013 02-28 Labriola et al revised .docx

Background: The lipid sensitivity of the prokaryotic pentameric ligand-gated ion channel (pLGIC), GLIC, is poorly characterized. Results: GLIC is more thermally stable and does not exhibit the same propensity to adopt an uncoupled conformation as the Torpedo nAChR. Conclusions: GLIC is less sensitive to its surrounding membrane environment. Significance: The GLIC and nAChR structures suggest mo...

متن کامل

Drying transition in the hydrophobic gate of the GLIC channel blocks ion conduction.

The theoretical prediction of water drying transitions near nonpolar surfaces has stimulated an intensive search for biological processes exploiting this extreme form of hydrophobicity. Here we quantitatively demonstrate that drying of a hydrophobic constriction is the major determinant of ion conductance in the GLIC pentameric ion channel. Molecular-dynamics simulations show that in the closed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 8 10  شماره 

صفحات  -

تاریخ انتشار 2012